

EXECUTIVE SUMMARY

L'edizione 2020 del Rapporto I-Com sull'innovazione energetica cade subito dopo la fase più acuta di una imprevista, anche se non imprevedibile, pandemia. La consueta ricerca intorno all'innovazione energetica che, come ogni anno, cerca di ampliare e differenziare lo spettro d'indagine rispetto all'edizione precedente, focalizzandosi su alcune innovazioni che potrebbero avere carattere paradigmatico (ad es., la micromobilità urbana) si presenta più ostica che in passato. Oltre alla usuale analisi sulla ricerca e sullo sviluppo, estesa anche alla mobilità, inevitabilmente sempre più sostenibile, abbiamo tentato di individuare altri ambiti di diffuso impatto, come il binomio energia e digitalizzazione o il sector coupling e l'accumulo di energia. Accanto a questi temi, le innovazioni nelle modalità di lavoro e infine l'approfondimento sulle startup, in particolare su quelle energetiche.

Il capitolo 1 esamina l'attività innovativa delle imprese nel mondo, guardando al numero di brevetti richiesti. A livello globale l'attività brevettuale segna infatti un incremento anche nel 2018, giungendo a toccare la soglia degli 1,5 milioni (+2,3% rispetto al 2017). Si consolida la leadership globale della Cina, mentre gli Stati Uniti, seppur di poco, sopravanzano il Giappone, in flessione dal 2016. Nelle sole tecnologie energetiche, seppur di strettissima misura, la Cina, per la prima volta, supera il Giappone. L'Italia, invece, continua a occupare una posizione marginale rispetto al complesso dei player internazionali ed europei. L'incidenza della brevettazione energetica nel nostro Paese, nonostante un incremento medio del 4,2% tra il 2008 e il 2018, passa dall'1,3% allo 0,8% del totale dei brevetti. Questo perché l'Italia presenta il tasso di incremento più basso tra tutti i Paesi considerati. Il focus sulle tecnologie elettriche conferma la performance della Cina che supera, per la seconda volta, gli Stati Uniti e guadagna spazio anche per il notevole ridimensionamento della Corea (da 24,4% a 16,5) che comunque entra nella top 3 a scapito del Giappone. Il dettaglio delle distribuzioni per tecnologia evidenzia una forte concentrazione dell'attività brevettuale nelle applicazioni per l'accumulo energetico, l'energia solare fotovoltaica ed eolica, che congiuntamente hanno intercettato nel 2018 più del 58% del totale (in flessione rispetto alla quota cumulata del 2017). Di nuovo, il contributo italiano è marginale, attestandosi stabilmente, da anni, attorno all'1% rispetto al contesto globale. Esaminando l'attività brevettuale italiana in campo elettrico, il portafoglio tecnologico appare piuttosto diversificato, con Accumulo, CCT e CCS, Fotovoltaico ed Eolico che rappresentano la maggioranza dei brevetti concessi nel 2018.

Circa l'attività di **brevettazione complessiva in Italia**, si osserva come i **depositari** siano in oltre l'80% dei casi, **imprese private**. Seguono, in termini di numerosità, le persone fisiche. Un ulteriore fattore di concentrazione è rappresentato dal territorio. La Lombardia, in prima posizione con il 37,5% dei brevetti, conta nel 2018 più del doppio dell'Emilia-Romagna, al secondo posto, che a sua volta stacca di oltre 6% il Veneto, di misura in vantaggio sul Piemonte. La prima tra le regioni del Sud e delle Isole è la Campania, che però pesa meno di un terzo del Lazio, che nei soli brevetti elettrici guadagna posizioni ed è in testa per biocarburanti e fotovoltaico.

Il capitolo 2 fornisce una panoramica dei brevetti nell'ambito della mobilità sostenibile o meglio elettrica. Sono prese in considerazione, nello specifico, le principali tecnologie elettriche applicate ai trasporti, attraverso l'interrogazione della banca dati dell'EPO (European Patent Office), in particolare del database Espacenet. L'analisi è stata effettuata prendendo in considerazione i settori dei veicoli ibridi, dei veicoli elettrici plug-in, dell'energy storage, delle fuel cell per i trasporti e per i veicoli elettrici e delle stazioni di ricarica. I Paesi considerati, invece, sono alcuni tra i maggiori al mondo: Stati Uniti, Giappone, Germania, Corea del Sud, Francia, Cina, Gran Bretagna, Italia, India e Spagna. Per gli anni 2018 e 2019 (quest'ultimo con dati provvisori) viene proposto uno spaccato dei brevetti richiesti per ogni tecnologia e Paese per poi fornire un quadro di insieme sull'attività brevettuale globale nel campo della mobilità elettriche. Si evidenzia una riduzione complessiva delle dimensioni dell'attività brevettuale nelle tecnologie di mobilità elettrica e una sostanziale marginalità del contributo italiano. Paesi leader nel settore, infatti, si confermano il Giappone (con un totale di 713 brevetti), gli Stati Uniti (703) e la Germania (596). Tra le tecnologie considerate, è l'energy storage, anche nell'analisi di questa edizione e del 2018 in particolare, a mostrare il numero di gran lunga maggiore di richieste di brevetto, superiore a 4.000. Seguono a grande distanza le stazioni di ricarica. Dopo troviamo i veicoli ibridi ed elettrici e, su quote più ridotte, le fuel cell per i trasporti e per i veicoli elettrici. Qui su 6.585 brevetti considerati per il 2018 il nostro Paese ne ha presentati solo cinque.

Delle diverse opzioni ai fini del conseguimento degli obiettivi europei su emissioni ed efficientamento energetico al 2050, il cosiddetto "sector coupling", cui è dedicato il capitolo 3, è tra i programmi più ambiziosi ed innovativi. Nel documento "Vision 2050" pubblicato nel 2018, la Piattaforma Europea per la Tecnologia e l'Innovazione (European Technology and Innovation Platform - ETIP) sulle Reti Intelligenti per la Transizione Energetica (Smart Network for the Energy Transition - SNET) ha proposto un modello circolare di integrazione delle reti dell'elettricità, del gas, del calore e dei combustibili liquidi, in modo da recepire ed indirizzare i radicali cambiamenti che avverranno nelle filiere dell'energia, come la massiccia introduzione delle fonti rinnovabili non

programmabili nel parco generazione. Il sector coupling presuppone la conversione di vettori energetici attraverso settori industriali adiacenti, nei quali l'energia trasformata può essere conservata (stoccata) e consumata o trasformata sotto forma di calore e/o gas/liquidi. Un simile nuovo approccio implica un progresso tecnologico, misurabile nella capacità di conversione (e perdite relative) delle tecnologie Power-to-Gas, Power-to-Heat e Power-to-Liquid (nonché' dei processi inversi e laterali), ma anche nell'approccio regolatorio e, in ultima istanza, in uno scarto culturale: i futuri clienti dell'energia non saranno solo consumatori attivi, ma prosumer sensibilizzati dai segnali di prezzo che partecipano al mercato anche sul lato vendita.

Anche grazie alla crescente penetrazione delle fonti rinnovabili negli ultimi anni la capacità di accumulo è cresciuta a un ritmo esponenziale. Nel 2019, tuttavia, si è registrato per la prima volta in quasi dieci anni un declino nelle installazioni annuali complessive; a calare sono state soprattutto le installazioni di sistemi di accumulo qrid-scale (-20%), mentre la crescita dello stoccaggio behindthe-meter è rimasta piatta (capitolo 4). Anche la crescita della capacità di accumulo in Europa è rallentata, malgrado le diverse iniziative a sostegno dell'energy storage, come i programmi finanziati da Horizon 2020, l'Alleanza europea per le batterie e il Fuel Cells and Hydrogen Joint Undertaking. La recente adozione della direttiva UE 2019/944 e del regolamento UE 2019/943 ha introdotto significative modifiche ai mercati dell'energia elettrica, con l'obiettivo di renderli integrati, competitivi, incentrati sui consumatori e flessibili, garantendo un accesso non discriminatorio a tutti i fornitori di servizi di accumulo dell'energia. La crescita della capacità di stoccaggio è considerata una priorità anche nel Piano nazionale integrato per l'energia (PNIEC), che prevede non solo un incremento dell'utilizzo dei sistemi di storage idroelettrico, ma anche lo sviluppo dell'accumulo elettrochimico, sia a livello distribuito che centralizzato, e del power to gas. Tra gli ostacoli all'investimento di fondi privati, solo parzialmente rimossi dalle norme contenute nel Clean Energy Package, rilevano in particolare i canoni di rete, la combinazione di entrate provenienti da servizi diversi, la titolarità degli impianti di accumulo e l'associazione dell'energia elettrica ad altre forme di energia. Risolvere tali questioni sarà particolarmente importante alla luce della recente crisi innescata dalla pandemia e del conseguente possibile calo degli investimenti.

Il capitolo 5 è incentrato sul tema della digital transformation in ambito energetico, analizzando i sistemi e le tecnologie che stanno rivoluzionando il settore. Il mercato energetico è già profondamente cambiato e i player energetici tradizionali stanno affrontando grandi e fondamentali sfide per competere in un settore che si sta evolvendo verso un ecosistema distribuito, interattivo e interconnesso. Tra le soluzioni tecnologiche maggiormente accreditate a

gestire la nuova moltitudine di soggetti che stanno entrando nel comparto energetico ci sono, per la loro natura intrinseca, i registri distribuiti e in particolare le blockchain. La catena di blocchi è una tecnologia che permette di implementare un archivio distribuito in grado di gestire transazioni tra gli utenti di una rete. Le nuove smart qrid, sempre più "reti intelligenti", possono sfruttare la blockchain per dare vita ad un mercato peer to peer in cui gli utenti di una rete possono acquistare e vendere energia automaticamente in maniera autonoma, senza la necessità di un'autorità centrale a fare da intermediario. Questo è possibile grazie all'utilizzo degli smart contract ("accordi automatizzati ed eseguibili") che si attivano in autonomia quando si soddisfano le condizioni per cui sono stati programmati (ad esempio il trasferimento di energia elettrica). La quantità di elettricità prodotta in surplus dai prosumer può essere quindi ceduta in automatico ad altri utenti della rete, senza necessitare dell'intervento di un intermediario. Eliminando gli intermediari si rendono le transazioni più veloci, efficienti e economicamente vantaggiose. Notevoli sono le potenzialità benché restino ancora irrisolti alcuni aspetti giuridici. Nel nostro Paese poi, anche più che altrove, non mancano le potenzialità intorno utilizzo dei dati – archiviati nel Registro Centrale Ufficiale del Sistema Informativo Integrato – per contrastare il fenomeno della morosità o potenziare le analisi a fini statistici o ancora rendere possibile, tutelando il consumatore e con il suo accordo, la messa a disposizione di dati consultabili dagli operatori. Anche in ragione del successo che sta avendo il Sistema Pubblico di Identità Digitale (SPID) si potrebbe lavorare per approntare un'identità digitale energetica, SPIDE, con la finalità di soluzioni di condivisione dei dati in accordo tra consumatori e operatori, per un'ottimizzazione dei processi e quindi un'auspicabile riduzione dei costi di sistema.

Crescenti scambi di dati, peraltro, caratterizzeranno l'evoluzione della mobilità di persone e merci nei prossimi anni (capitolo 6), ambito in cui la diffusione della rete 5G avrà un ruolo determinante e sarà fattore abilitante per la guida autonoma. La diffusione generalizzata di quest'ultima, non potrà tuttavia che essere graduale, nonostante se ne parli ampiamente. Altrettanto lo saranno i tanti cambiamenti che si profilano all'orizzonte. Ciò pur essendo chiaro il percorso di contenimento degli impatti ambientali avviato grazie a una spinta innovativa che, corroborata da normative sempre più stringenti, si manterrà sostenuta tanto per gli aspetti tecnologici, quanto per quelli immateriali e infrastrutturali. L'approvazione del nuovo regolamento UE 2019/631 che fissa i nuovi obiettivi di riduzione delle emissioni di CO₂ per automobili e veicoli commerciali leggeri al 2030 con un traguardo intermedio al 2025, insieme al complesso passaggio dalla procedura di omologazione NEDC (New European Driving Cycle), alla più severa WLTP (Worldwide harmonized Light vehicles Test Procedure) rappresentano un poderoso incentivo all'elettrificazione e all'efficienza dei veicoli.

Un ambito in cui il motore elettrico, con e senza spina, aiuterà tutte le alimentazioni, anche quelle alternative. E proprio nelle alimentazioni bisognerà attendersi l'arrivo di nuovi carburanti: dall'idrogeno agli *E-Fuel*, mentre nel breve e nel medio termine proseguirà l'evoluzione bio, come dimostra la circolarità del biometano. Per quanto riguarda i veicoli industriali, se le vendite hanno subito una contrazione per via della pandemia, continua e con ritmo identico allo scorso anno l'espansione della rete di distribuzione del gas naturale in forma liquefatta (GNL), nonostante non sia stata ancora risolta la pressoché totale dipendenza dall'estero. Per quanto riguarda la micromobilità attiva e sostenibile, una nuova spinta è arrivata dalle misure di distanziamento imposte dall'emergenza sanitaria, e le vendite di biciclette e a pedalata assistista hanno raggiunto punte da record.

La pandemia di COVID-19 ha incentivato anche il lavoro da remoto, cui è dedicato il capitolo 7, che approfondisce la diffusione dello smart working e, in generale, delle forme di restituzione ai lavoratori di flessibilità e autonomia nella scelta degli spazi, degli orari e degli strumenti da utilizzare a fronte di una maggiore responsabilizzazione sugli obiettivi conseguiti. In questo ambito, si fornisce innanzitutto un'analisi comparata sullo scenario europeo della diffusione dello smart working e si spiegano le ragioni del ritardo italiano rispetto agli standard europei. Segue una disamina sullo stato dello smart working in Italia, con un focus sull'adozione del lavoro agile per settore e dimensione di impresa. Si sottolinea poi come la pandemia abbia impattato sulla sua diffusione e gli effetti che esso presenta sotto il profilo energetico. Dall'analisi emerge il divario che separa l'Italia dall'Europa. In questo ambito, pesa innanzitutto un generale ritardo nella digitalizzazione del Paese. La pandemia ha determinato le condizioni per una prima generalizzata sperimentazione di forme di lavoro agile, i cui effetti andranno valutati nel medio termine e comparati a livello europeo. In relazione alle conseguenze dello smart working sui consumi energetici, dall'analisi proposta non si evidenzia una chiara riduzione dei consumi. Anzi, i profili energetici dello smart working rimangono soggetti a numerosi fattori e segnalano diverse indeterminatezze.

Nel capitolo 8 viene monitorato il processo di costituzione delle **start-up** sul territorio nazionale (ormai oltre la soglia degli 11.000), con particolare attenzione a quelle energetiche, giunte attualmente ad un totale di 1.610. Queste ultime continuano a essere particolarmente concentrate nelle regioni settentrionali. **La Lombardia rimane in testa**, con quasi 3.000 nuove realtà imprenditoriali, ma segue il Lazio, con quasi 1.300 start-up. Si conferma la particolare vocazione ai servizi, nel caso delle start-up energetiche particolarmente nelle attività di R&S, oltre che un particolare dinamismo in quanto ad attività innovativa di elevato livello, intesa cioè come in grado

EXECUTIVE SUMMARY

di tradursi in brevetti depositati o software registrati. Un aspetto che assume sempre maggiore rilievo è l'apporto che l'ecosistema delle start-up può dare all'economia nazionale. L'elemento dimensionale continua a rappresentare la principale criticità: quasi il 90% delle start-up fattura, infatti, meno di 500.000 euro, sia nel settore energetico che negli altri, e in pochi casi la forza lavoro impiegata supera i dieci addetti (circa il 5%). Tuttavia, non va trascurato l'impatto economico e occupazionale di queste nuove realtà imprenditoriali: le stime parlano, per l'ecosistema start-up nel suo complesso, di un valore fino a 4 miliardi di euro, di cui oltre un quinto generato nelle sole regioni meridionali. Inoltre, il 16% di questo valore complessivo è da attribuirsi alle sole start-up energetiche (oltre 660 milioni di euro). Meno incisivo, ma comunque in crescita, l'impatto in termini occupazionali, dove si stimano fino a quasi 68.500 posti di lavoro (oltre la metà nel Nord Italia), di cui circa 9.600 nel solo comparto energia.